- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ellis, R S (2)
-
Agarwal, S (1)
-
Agrawal, A (1)
-
Arendse, N (1)
-
Belli, S (1)
-
Burns, C (1)
-
Caminha, G B (1)
-
Cañameras, R (1)
-
Chakrabarti, S (1)
-
Chen, W (1)
-
Chisholm, J (1)
-
Cohen, S H (1)
-
Collett, T E (1)
-
Coulter, D A (1)
-
Dhawan, S (1)
-
Diego, J M (1)
-
DŚilva, J_C J (1)
-
Engesser, M (1)
-
Ertl, S (1)
-
Foo, N (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We discuss the spectral energy distributions and physical properties of six galaxies whose photometric redshifts suggest they lie beyond a redshift z ≃ 9. Each was selected on account of a prominent excess seen in the Spitzer/IRAC 4.5 $$\mu$$m band which, for a redshift above z = 9.0, likely indicates the presence of a rest-frame Balmer break and a stellar component that formed earlier than a redshift z ≃ 10. In addition to constraining the earlier star formation activity on the basis of fits using stellar population models with BAGPIPES, we have undertaken the necessary, but challenging, follow-up spectroscopy for each candidate using various combinations of Keck/MOSFIRE, VLT/X-shooter, Gemini/FLAMINGOS2, and ALMA. Based on either Lyman-α or [O iii] 88 $$\mu$$m emission, we determine a convincing redshift of z = 8.78 for GN-z-10-3 and a likely redshift of z = 9.28 for the lensed galaxy MACS0416-JD. For GN-z9-1, we conclude the case remains promising for a source beyond z ≃ 9. Together with earlier spectroscopic data for MACS1149-JD1, our analysis of this enlarged sample provides further support for a cosmic star formation history extending beyond redshifts z ≃ 10. We use our best-fitting stellar population models to reconstruct the past rest-frame UV luminosities of our sources and discuss the implications for tracing earlier progenitors of such systems with the James Webb Space Telescope.more » « less
-
Pierel, J_D R; Newman, A B; Dhawan, S; Gu, M; Joshi, B A; Li, T; Schuldt, S; Strolger, L G; Suyu, S H; Caminha, G B; et al (, The Astrophysical Journal Letters)Abstract A bright (mF150W,AB= 24 mag),z= 1.95 supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called “Requiem,” and therefore the new SN is named “Encore.” This makes the MACS J0138.0−2155 cluster the first known system to produce more than one multiply imaged SN. Moreover, both SN Requiem and SN Encore are Type Ia SNe (SNe Ia), making this the most distant case of a galaxy hosting two SNe Ia. Using parametric host fitting, we determine the probability of detecting two SNe Ia in this host galaxy over a ∼10 yr window to be ≈3%. These observations have the potential to yield a Hubble constant (H0) measurement with ∼10% precision, only the third lensed SN capable of such a result, using the three visible images of the SN. Both SN Requiem and SN Encore have a fourth image that is expected to appear within a few years of ∼2030, providing an unprecedented baseline for time-delay cosmography.more » « less
An official website of the United States government
